Basics of GIS and Arc-GIS Training Curriculum

Basics of GIS

- GIS stands for Geographic Information System, used to manage and analyze spatial (location-based) data.
- Integrates maps, data, and analysis tools for better decision-making.
- Main components: Hardware, Software, Data, People, and Methods.
- Works with two data types: Vector (points, lines, polygons) and Raster (grids, imagery).
- Attributes (non-spatial features) describe spatial features (e.g., name, type, population).
- Uses Coordinate Systems and Projections to accurately locate data on Earth.
- Performs spatial analysis like buffering, overlay, and querying.
- Data collected from GPS, Remote Sensing, Surveys, and Open Data sources.
- Key outputs: Maps, Reports, Dashboards, and Visual Insights.
- Widely applied in urban planning, agriculture, environment, disaster management, and navigation.
- Nowadays, GIS technology is being utilized across almost every sector, empowering organizations with location-based insights for smarter decision-making.

Introduction to ArcGIS Desktop (ArcMap / ArcCatalog / ArcToolbox)

- Introduction to ArcGIS interface and components.
- ArcMap: Data display, visualization, and map composition.
- ArcCatalog: Data organization and metadata management.
- ArcToolbox: Accessing geoprocessing tools for analysis.
- Coordinate Reference Systems (CRS) setup and management.
- Understanding map documents (.mxd) and project organization.
- Working with table of contents, layers, and symbology.

Hands-On: Create and save an ArcMap project, load layers, and apply symbology.

Spatial and Attribute Data Handling

- Adding Data: Shapefiles, feature classes, raster datasets, and tables.
- Creating and Editing Data:
 - o Create new shapefiles and feature classes in ArcCatalog.
 - Digitize points, lines, and polygons in ArcMap.
 - Use Editor Toolbar for geometry editing.
 - o Apply snapping and topology rules during digitization.
- Attribute Table Operations:
 - Add/edit fields, calculate geometry (area, length).
 - o Perform attribute queries (Select by Attributes), select by location queries.
 - o Join and relate tables for data enrichment.
- Hands-On: Digitize a boundary map and attach attribute information.

Spatial Analysis and Geoprocessing

- Understanding geoprocessing tools in Arc-Toolbox.
- Common tools:
 - o Buffer, Clip, Union, Intersect, Dissolve, Merge, Erase.
 - Spatial Join and Overlay Analysis.
- Raster Analysis:
 - Extract by mask, raster calculator, slope, aspect, hillshade.
 - Convert between raster and vector data.
- Hands-On: Perform site suitability or land-use analysis using spatial overlays.

Map Design and Layout (Cartography)

- Principles of map design and cartographic standards.
- Creating map layouts: Titles, legends, scale bars, north arrows, grids.
- Using Layout View to export high-quality maps (PDF, JPG, TIFF).
- Apply labeling, classification, and symbology.
- Hands-On: Design and export a thematic map for presentation.

Learning Outcomes

- Gain proficiency in data creation, editing, and spatial analysis using ArcGIS Desktop.
- Develop ability to design professional maps
- Prepare for industry-ready roles in GIS analysis, mapping, and project execution.

Assignments

Includes **practical training**, **theoretical assignments**, **and expert interview guidance** to build complete industry readiness.